R/misc.R
bshift.Rd
Backshift Operator
Apply the backshift operator or lag operator to a time series objective.
bshift(x, k = 1)
x | univariate or multivariate time series. |
---|---|
k | number of lags. |
x <- arima.sim(model = list(ar = 0.8, sd = 0.5), n = 120) bshift(x, k = 12)#> [,1] #> [1,] NA #> [2,] NA #> [3,] NA #> [4,] NA #> [5,] NA #> [6,] NA #> [7,] NA #> [8,] NA #> [9,] NA #> [10,] NA #> [11,] NA #> [12,] NA #> [13,] -0.862519765 #> [14,] -2.202415463 #> [15,] -0.826569181 #> [16,] -0.484766734 #> [17,] -0.144127923 #> [18,] 1.508246545 #> [19,] 1.318635319 #> [20,] 0.920911242 #> [21,] -1.173358474 #> [22,] -1.217924021 #> [23,] -1.287785195 #> [24,] 0.037079723 #> [25,] 0.099698629 #> [26,] -0.559364421 #> [27,] -0.497456436 #> [28,] -0.649448592 #> [29,] -0.074761758 #> [30,] 2.695608169 #> [31,] 2.203017916 #> [32,] 2.340123402 #> [33,] 1.990293596 #> [34,] -0.319485614 #> [35,] 0.606497990 #> [36,] 0.241961653 #> [37,] -0.012517873 #> [38,] 0.009163294 #> [39,] 0.036891390 #> [40,] 0.579340653 #> [41,] -1.810642334 #> [42,] 1.234043316 #> [43,] 0.626013398 #> [44,] 0.714166468 #> [45,] 1.645679056 #> [46,] 0.651454997 #> [47,] 1.635116416 #> [48,] 1.062196721 #> [49,] -0.327805932 #> [50,] -1.238095362 #> [51,] 0.074581031 #> [52,] 0.191335459 #> [53,] 0.641697177 #> [54,] -1.186092827 #> [55,] -2.419610568 #> [56,] -1.651538110 #> [57,] 0.016089925 #> [58,] 0.249568223 #> [59,] 1.517947963 #> [60,] 1.738268158 #> [61,] 1.997362573 #> [62,] 1.487954386 #> [63,] 1.362545224 #> [64,] 0.999708892 #> [65,] 2.724110455 #> [66,] 3.477681123 #> [67,] 3.530936166 #> [68,] 3.380973262 #> [69,] 2.156521346 #> [70,] 2.835751969 #> [71,] -0.343732758 #> [72,] -0.430679982 #> [73,] 0.089345804 #> [74,] -0.310474469 #> [75,] 0.175808000 #> [76,] 1.203748396 #> [77,] 2.011711336 #> [78,] 1.571266174 #> [79,] 1.743161859 #> [80,] 3.067412098 #> [81,] 2.099568515 #> [82,] 2.626002698 #> [83,] 3.417628515 #> [84,] 2.437462787 #> [85,] 1.562756654 #> [86,] 0.464772668 #> [87,] -0.684918733 #> [88,] -1.343476416 #> [89,] -2.831056561 #> [90,] -2.955383145 #> [91,] -2.922848511 #> [92,] -2.874942135 #> [93,] -2.072826575 #> [94,] -0.679806340 #> [95,] -0.752727723 #> [96,] -2.001592639 #> [97,] -1.342736823 #> [98,] -1.515988911 #> [99,] -0.644191268 #> [100,] 1.611497445 #> [101,] 1.714056397 #> [102,] -0.313036415 #> [103,] -0.001027348 #> [104,] 1.072016374 #> [105,] 2.896982361 #> [106,] 2.767039667 #> [107,] 3.605445779 #> [108,] 3.310923170 #> [109,] 2.756322529 #> [110,] 2.227352756 #> [111,] 2.385493215 #> [112,] 1.645743999 #> [113,] 0.788331117 #> [114,] 0.822814316 #> [115,] -0.487948216 #> [116,] 0.455826092 #> [117,] 0.446380503 #> [118,] -0.948012608 #> [119,] -1.703322146 #> [120,] -0.908316123